# FOUNTAIN CITY OF 2025 Drinking Water Quality Report Covering Data For Calendar Year 2024

Public Water System ID: CO0121275

## Esta es información importante. Si no la pueden leer, necesitan que alguien se la traduzca.

We are pleased to present to you this year's water quality report. Our constant goal is to provide you with a safe and dependable supply of drinking water. Please contact Taylor Murphy at 719-322-2071 with any questions or for public participation opportunities that may affect water quality. Please see the water quality data from our wholesale system(s) (either attached or included in this report) for additional information about your drinking water.

## **General Information**

All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline (1-800-426-4791) or by visiting epa.gov/ground-water-and-drinking-water.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV-AIDS or other immune system disorders, some elderly, and infants can be particularly at risk of infections. These people should seek advice about drinking water from their health care providers. For more information about contaminants and potential health effects, or to receive a copy of the U.S. Environmental Protection Agency (EPA) and the U.S. Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and microbiological contaminants call the EPA Safe Drinking Water Hotline at (1-800-426-4791).

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:

- Microbial contaminants: viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants: salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides: may come from a variety of sources, such as agriculture, urban storm water runoff, and residential uses.
- Radioactive contaminants: can be naturally occurring or be the result of oil and gas production and mining activities.
- Organic chemical contaminants: including synthetic and volatile organic chemicals, which are byproducts of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff, and septic systems.

In order to ensure that tap water is safe to drink, the Colorado Department of Public Health and Environment prescribes regulations limiting the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration regulations establish limits for contaminants in bottled water that must provide the same protection for public health.

## **Lead in Drinking Water**

Lead can cause serious health effects in people of all ages, especially pregnant people, infants (both formula-fed and breastfed), and young children. Lead in drinking water is primarily from materials and parts used in service lines and in home plumbing. We are responsible for providing high quality drinking water and removing lead pipes but cannot control the variety of materials used in the plumbing in your home. Because lead levels may vary over time, lead exposure is possible even when your tap sampling results do not detect lead at one point in time.

You can help protect yourself and your family by identifying and removing lead materials within your home plumbing and taking steps to reduce your family's risk. Using a filter, certified by an American National Standards Institute accredited certifier to reduce lead, is effective in reducing lead exposures. Follow the instructions provided with the filter to ensure the filter is used properly.

Use only cold water for drinking, cooking, and making baby formula. Boiling water does not remove lead from water. Before using tap water for drinking, cooking, or making baby formula, flush your pipes for several minutes. You can do this by running your tap, taking a shower, doing laundry or a load of dishes. If you have a lead service line or galvanized requiring replacement service line, you may need to flush your pipes for a longer period. If you are concerned about lead in your water and wish to have your water tested, contact Taylor Murphy 719-322-2071. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available at epa.gov/safewater/lead.

## **Service Line Inventory**

New state and federal laws require us to inventory all water service lines in our service area to classify the material. A service line is the underground pipe that carries water from the water main, likely in the street, into your home or building. If you would like to view a copy of our service line inventory or have questions about the material of your service line, contact Taylor Murphy at 719-322-2071.

## **Source Water Assessment and Protection (SWAP)**

The Colorado Department of Public Health and Environment may have provided us with a Source Water Assessment Report for our water supply. For general information or to obtain a copy of the report please visit <a href="wqcdcompliance.com/cer">wqcdcompliance.com/cer</a>. The report is located under "Guidance: Source Water Assessment Reports". Search the table using our system name or ID, or by contacting Taylor Murphy at 719-322-2071. The Source Water Assessment Report provides a screening-level evaluation of potential contamination that *could* occur. It *does not* mean that the contamination *has or will* occur. We can use this information to evaluate the need to improve our current

water treatment capabilities and prepare for future contamination threats. This can help us ensure that quality finished water is delivered to your homes. In addition, the source water assessment results provide a starting point for developing a source water protection plan. Potential sources of contamination in our source water area are listed below. Please contact us to learn more about what you can do to help protect your drinking water sources, any questions about the Drinking Water Quality Report, to learn more about our system, or to attend scheduled public meetings. We want you, our valued customers, to be informed about the services we provide and the quality water we deliver to you every day.

## **Our Water Sources**

| Sources (Water Type - Source Type)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Potential Source(s) of Contamination                                                                                                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GOLDFIELD CC - RECEIVED FROM WIDEFIELD (Surface Water-Consecutive Connection)  PURCHASED FROM CO0121775 (Surface Water-Consecutive Connection)  WELL NO 1 REDRILL NORTH AGA PARK (Groundwater-Well)  RICE LANE CC - RECEIVED FROM WIDEFIELD (Surface Water-Consecutive Connection)  MESA RIDGE CC - RECEIVED FROM WIDEFIELD (Surface Water-Consecutive Connection)  PURCHSD FROM CO0121300 FVA (Surface Water-Consecutive Connection)  WELL NO 2 SOUTH AGA PARK (Groundwater-Well)  WELL NO 3 LIBRARY (Groundwater-Well)  WELL NO 4 DALE ST (Groundwater-Well) | Aboveground, Underground and Leaking Storage Tank Sites, Existing/Abandoned Mine Sites, Other Facilities, Commercial/Industrial/Transportation, High Intensity Residential, Low Intensity Residential, Urban Recreational Grasses, Row Crops, Pasture / Hay, Septic Systems, Road Miles |

## **Terms and Abbreviations**

- Maximum Contaminant Level (MCL) The highest level of a contaminant allowed in drinking water.
- Treatment Technique (TT) A required process intended to reduce the level of a contaminant in drinking water.
- **Health-Based** A violation of either a MCL or TT.
- Non-Health-Based A violation that is not a MCL or TT.
- Action Level (AL) The concentration of a contaminant which, if exceeded, triggers treatment and other regulatory
  requirements.
- Maximum Residual Disinfectant Level (MRDL) The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
- Maximum Contaminant Level Goal (MCLG) The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
- Maximum Residual Disinfectant Level Goal (MRDLG) The level of a drinking water disinfectant, below which there
  is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial
  contaminants.
- Violation (No Abbreviation) Failure to meet a Colorado Primary Drinking Water Regulation.
- **Formal Enforcement Action (No Abbreviation)** Escalated action taken by the State (due to the risk to public health, or number or severity of violations) to bring a non-compliant water system back into compliance.
- Variance and Exemptions (V/E) Department permission not to meet a MCL or treatment technique under certain conditions.
- Gross Alpha (No Abbreviation) Gross alpha particle activity compliance value. It includes radium-226, but excludes radon 222, and uranium.
- **Picocuries per liter (pCi/L)** Measure of the radioactivity in water.

- Nephelometric Turbidity Unit (NTU) Measure of the clarity or cloudiness of water. Turbidity in excess of 5 NTU is just noticeable to the typical person.
- Compliance Value (No Abbreviation) Single or calculated value used to determine if regulatory contaminant level (e.g. MCL) is met. Examples of calculated values are the 90<sup>th</sup> Percentile, Running Annual Average (RAA) and Locational Running Annual Average (LRAA).
- Average (x-bar) Typical value.
- Range (R) Lowest value to the highest value.
- Sample Size (n) Number or count of values (i.e. number of water samples collected).
- Parts per million = Milligrams per liter (ppm = mg/L) One part per million corresponds to one minute in two years or a single penny in \$10,000.
- Parts per billion = Micrograms per liter (ppb = ug/L) One part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.
- Not Applicable (N/A) Does not apply or not available.
- Level 1 Assessment A study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.
- Level 2 Assessment A very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

## **Detected Contaminants**

FOUNTAIN CITY OF routinely monitors for contaminants in your drinking water according to Federal and State laws. The following table(s) show all detections found in the period of January 1 to December 31, 2024 unless otherwise noted. The State of Colorado requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year, or the system is not considered vulnerable to this type of contamination. Therefore, some of our data, though representative, may be more than one-year-old. Violations and Formal Enforcement Actions, if any, are reported in the next section of this report.

**Note:** Only detected contaminants sampled within the last 5 years appear in this report. If no tables appear in this section, then no contaminants were detected in the last round of monitoring.

| Disinfectants Sampled in the Distribution System  TT Requirement: At least 95% of samples per period (month or quarter) must be at least 0.2 ppm  If sample size is less than 40 no more than 1 sample is below 0.2 ppm  Typical Sources: Water additive used to control microbes |                                                                             |         |                   |        |           |      |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------|-------------------|--------|-----------|------|--|--|--|
| Disinfectant                                                                                                                                                                                                                                                                      | Time Period                                                                 | Results | Number of Samples | Sample | TT        | MRDL |  |  |  |
| Name                                                                                                                                                                                                                                                                              |                                                                             |         | Below Level       | Size   | Violation |      |  |  |  |
| Chlorine                                                                                                                                                                                                                                                                          | Chlorine December, 2024 Lowest period percentage of samples 0 31 No 4.0 ppm |         |                   |        |           |      |  |  |  |
|                                                                                                                                                                                                                                                                                   | meeting TT requirement: 100%                                                |         |                   |        |           |      |  |  |  |
|                                                                                                                                                                                                                                                                                   |                                                                             |         |                   |        |           |      |  |  |  |

|                     | Lead and Copper Sampled in the Distribution System |                             |                                |                |                    |                                      |                                |                                                    |                                                                               |  |  |
|---------------------|----------------------------------------------------|-----------------------------|--------------------------------|----------------|--------------------|--------------------------------------|--------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------|--|--|
| Contaminant<br>Name | Time<br>Period                                     | Tap Sample Range Low – High | 90 <sup>th</sup><br>Percentile | Sample<br>Size | Unit of<br>Measure | 90 <sup>th</sup><br>Percentile<br>AL | Sample<br>Sites<br>Above<br>AL | 90 <sup>th</sup><br>Percentile<br>AL<br>Exceedance | Typical Sources                                                               |  |  |
| Copper              | 07/09/2024<br>to<br>07/15/2024                     | 0.018 to<br>0.61            | 0.35                           | 30             | ppm                | 1.3                                  | 0                              | No                                                 | Corrosion of<br>household plumbing<br>systems; Erosion of<br>natural deposits |  |  |
| Lead                | 07/09/2024<br>to<br>07/15/2024                     | 0 to 5.8                    | 2.4                            | 30             | ppb                | 15                                   | 0                              | No                                                 | Corrosion of<br>household plumbing<br>systems; Erosion of<br>natural deposits |  |  |

| Disinfection Byproducts Sampled in the Distribution System |      |         |                     |                |                    |     |      |                  |                                          |  |
|------------------------------------------------------------|------|---------|---------------------|----------------|--------------------|-----|------|------------------|------------------------------------------|--|
| Name                                                       | Year | Average | Range<br>Low – High | Sample<br>Size | Unit of<br>Measure | MCL | MCLG | MCL<br>Violation | Typical Sources                          |  |
| Total Haloacetic<br>Acids (HAA5)                           | 2024 | 29.41   | 11 to 68.6          | 16             | ppb                | 60  | N/A  | No               | Byproduct of drinking water disinfection |  |
| Total Trihalomethanes (TTHM)                               | 2024 | 52.45   | 21.5 to 100.7       | 16             | ppb                | 80  | N/A  | No               | Byproduct of drinking water disinfection |  |

| Radionuclides Sampled at the Entry Point to the Distribution System |      |         |                     |                |                    |     |      |                  |                             |  |  |
|---------------------------------------------------------------------|------|---------|---------------------|----------------|--------------------|-----|------|------------------|-----------------------------|--|--|
| Contaminant<br>Name                                                 | Year | Average | Range<br>Low – High | Sample<br>Size | Unit of<br>Measure | MCL | MCLG | MCL<br>Violation | Typical Sources             |  |  |
| Gross Alpha                                                         | 2023 | 3.835   | 2.11 to 4.83        | 4              | pCi/L              | 15  | 0    | No               | Erosion of natural deposits |  |  |
| Combined<br>Radium                                                  | 2023 | 0.22    | 0 to 0.88           | 4              | pCi/L              | 5   | 0    | No               | Erosion of natural deposits |  |  |
| Combined<br>Uranium                                                 | 2023 | 5.95    | 4.5 to 8.1          | 4              | ppb                | 30  | 0    | No               | Erosion of natural deposits |  |  |

|                     |      | Inorgai | nic Contaminar      | ts Sample      | d at the Enti      | y Point t | o the Distri | ibution Syste    | m                                                                                                                                     |
|---------------------|------|---------|---------------------|----------------|--------------------|-----------|--------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Contaminant<br>Name | Year | Average | Range<br>Low – High | Sample<br>Size | Unit of<br>Measure | MCL       | MCLG         | MCL<br>Violation | Typical Sources                                                                                                                       |
| Barium              | 2023 | 0.04    | 0.04 to 0.05        | 4              | ppm                | 2         | 2            | No               | Discharge of drilling wastes;<br>discharge from metal<br>refineries; erosion of natural<br>deposits                                   |
| Chromium            | 2023 | 0.88    | 0 to 1.8            | 4              | ppb                | 100       | 100          | No               | Discharge from steel and<br>pulp mills; erosion of natural<br>deposits                                                                |
| Fluoride            | 2023 | 1.5     | 1.5 to 1.5          | 4              | ppm                | 4         | 4            | No               | Erosion of natural deposits;<br>water additive which<br>promotes strong teeth;<br>discharge from fertilizer and<br>aluminum factories |
| Nitrate             | 2024 | 2.5     | 2.5 to 2.5          | 2              | ppm                | 10        | 10           | No               | Runoff from fertilizer use;<br>leaching from septic tanks,<br>sewage; erosion of natural<br>deposits                                  |
| Selenium            | 2023 | 6.5     | 5.1 to 9.4          | 4              | ppb                | 50        | 50           | No               | Discharge from petroleum<br>and metal refineries; erosion<br>of natural deposits; discharge<br>from mines                             |

| Volatile Organic Contaminants (VOC's) Sampled at the Entry Point to the Distribution System |      |   |     |     |     |  |  |  |  |
|---------------------------------------------------------------------------------------------|------|---|-----|-----|-----|--|--|--|--|
| Contaminant Name Year Sample Size Range Average Unit of Measure                             |      |   |     |     |     |  |  |  |  |
| Bromoform                                                                                   | 2024 | 1 | 1.5 | 1.5 | ppb |  |  |  |  |
| Dibromochloromethane                                                                        | 2024 | 1 | 1.2 | 1.2 | ppb |  |  |  |  |

| Secondary Contaminants**  **Secondary standards are non-enforceable guidelines for contaminants that may cause cosmetic effects (such as skin, or tooth discoloration) or aesthetic effects (such as taste, odor, or color) in drinking water |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Contaminant<br>Name                                                                                                                                                                                                                           | The state of the s |  |  |  |  |  |  |  |  |  |
| Sodium         2023         101.5         96 to 110         4         ppm         N/A                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |

## **Unregulated Contaminants\*\*\***

EPA has implemented the Unregulated Contaminant Monitoring Rule (UCMR) to collect data for contaminants that are suspected to be present in drinking water and do not have health-based standards set under the Safe Drinking Water Act. EPA uses the results of UCMR monitoring to learn about the occurrence of unregulated contaminants in drinking water and to decide whether or not these contaminants will be regulated in the future. We performed monitoring and reported the analytical results of the monitoring to EPA in accordance with its Unregulated Contaminant Monitoring Rule (UCMR). Once EPA reviews the submitted results, the results are made available in the EPA's National Contaminant Occurrence Database (NCOD) (epa.gov/dwucmr/national-contaminant-occurrence-database-ncod) Consumers can review UCMR results by accessing the NCOD. Contaminants that were detected during our UCMR sampling and the corresponding analytical results are provided below.

| Contaminant Name | Year | Average | Range<br>Low – High | Sample Size | Unit of Measure |
|------------------|------|---------|---------------------|-------------|-----------------|
|                  |      |         | -                   |             |                 |
|                  |      |         |                     |             |                 |
|                  |      |         |                     |             |                 |
|                  |      |         |                     |             |                 |
|                  |      |         |                     |             |                 |
|                  |      |         |                     |             |                 |
|                  |      |         |                     |             |                 |
|                  |      |         |                     |             |                 |
|                  |      |         |                     |             |                 |
|                  |      |         |                     |             |                 |
|                  |      |         |                     |             |                 |
|                  |      |         |                     |             |                 |

<sup>\*\*\*</sup>More information about the contaminants that were included in UCMR monitoring can be found at: <a href="mailto:drinktap.org/Water-Info/Whats-in-My-Water/Unregulated-Contaminant-Monitoring-Rule-UCMR">drinktap.org/Water-Info/Whats-in-My-Water/Unregulated-Contaminant-Monitoring-Rule-UCMR</a>. Learn more about the EPA UCMR at: <a href="mailto:epa.gov/dwucmr/learn-about-unregulated-contaminant-monitoring-rule">epa.gov/dwucmr/learn-about-unregulated-contaminant-monitoring-rule</a> or contact the Safe Drinking Water Hotline at (800) 426-4791 or <a href="mailto:epa.gov/ground-water-and-drinking-water">epa.gov/ground-water-and-drinking-water</a>.

## Violations, Significant Deficiencies, and Formal Enforcement Actions

| No Violations or Formal Enforcement Actions |
|---------------------------------------------|
|                                             |
|                                             |

# WIDEFIELD WSD 2025 Drinking Water Quality Report Covering Data For Calendar Year 2024

Public Water System ID: C00121900

Esta es información importante. Si no la pueden leer, necesitan que alguien se la traduzca.

We are pleased to present to you this year's water quality report. Our constant goal is to provide you with a safe and dependable supply of drinking water. Please contact LUCAS HALE at 719-390-7111 with any questions or for public participation opportunities that may affect water quality. Please see the water quality data from our wholesale system(s) (either attached or included in this report) for additional information about your drinking water.

## General Information

All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline (1-800-426-4791) or by visiting <a href="mailto:epa.gov/ground-water-and-drinking-water">epa.gov/ground-water-and-drinking-water</a>.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV-AIDS or other immune system disorders, some elderly, and infants can be particularly at risk of infections. These people should seek advice about drinking water from their health care providers. For more information about contaminants and potential health effects, or to receive a copy of the U.S. Environmental Protection Agency (EPA) and the U.S. Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and microbiological contaminants call the EPA Safe Drinking Water Hotline at (1-800-426-4791).

## **Contaminant Information**

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:

- **Microbial contaminants:** viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- **Inorganic contaminants:** salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

WIDEFIELD WSD, PWS ID: C00121900 2025 CCR Page 1 of 12

- **Pesticides and herbicides:** may come from a variety of sources, such as agriculture, urban storm water runoff, and residential uses.
- Radioactive contaminants: can be naturally occurring or be the result of oil and gas production and mining activities.
- Organic chemical contaminants: including synthetic and volatile organic chemicals, which are byproducts of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff, and septic systems.

In order to ensure that tap water is safe to drink, the Colorado Department of Public Health and Environment prescribes regulations limiting the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration regulations establish limits for contaminants in bottled water that must provide the same protection for public health.

## Lead in Drinking Water

Lead can cause serious health effects in people of all ages, especially pregnant people, infants (both formula-fed and breastfed), and young children. Lead in drinking water is primarily from materials and parts used in service lines and in home plumbing. We are responsible for providing high quality drinking water and removing lead pipes but cannot control the variety of materials used in the plumbing in your home. Because lead levels may vary over time, lead exposure is possible even when your tap sampling results do not detect lead at one point in time.

You can help protect yourself and your family by identifying and removing lead materials within your home plumbing and taking steps to reduce your family's risk. Using a filter, certified by an American National Standards Institute accredited certifier to reduce lead, is effective in reducing lead exposures. Follow the instructions provided with the filter to ensure the filter is used properly.

Use only cold water for drinking, cooking, and making baby formula. Boiling water does not remove lead from water. Before using tap water for drinking, cooking, or making baby formula, flush your pipes for several minutes. You can do this by running your tap, taking a shower, doing laundry or a load of dishes. If you have a lead service line or galvanized requiring replacement service line, you may need to flush your pipes for a longer period. If you are concerned about lead in your water and wish to have your water tested, contact LUCAS HALE at 719-390-7111. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available at <a href="mailto:epa.gov/safewater/lead">epa.gov/safewater/lead</a>.

# Service Line Inventory

New state and federal laws require us to inventory all water service lines in our service area to classify the material. A service line is the underground pipe that carries water from the water main, likely in the street, into your home or building. If you would like to view a copy of our service line inventory or have questions about the material of your service line, contact LUCAS HALE at 719-390-7111.

WIDEFIELD WSD, PWS ID: C00121900 2025 CCR Page 2 of 12

## Source Water Assessment and Protection (SWAP)

The Colorado Department of Public Health and Environment may have provided us with a Source Water Assessment Report for our water supply. For general information or to obtain a copy of the report please visit wqcdcompliance.com/ccr. The report is located under "Guidance: Source Water Assessment Reports". Search the table using our system name or ID, or by contacting LUCAS HALE at 719-390-7111. The Source Water Assessment Report provides a screening-level evaluation of potential contamination that *could* occur. It *does* not mean that the contamination has or will occur. We can use this information to evaluate the need to improve our current water treatment capabilities and prepare for future contamination threats. This can help us ensure that quality finished water is delivered to your homes. In addition, the source water assessment results provide a starting point for developing a source water protection plan. Potential sources of contamination in our source water area are listed below. Please contact us to learn more about what you can do to help protect your drinking water sources, any questions about the Drinking Water Quality Report, to learn more about our system, or to attend scheduled public meetings. We want you, our valued customers, to be informed about the services we provide and the quality water we deliver to you every day.

## **Our Water Sources**

| Sources (Water Type - Source Type)                                                                                                                                                                                                                                                                                                                                                                                    | Potential Source(s) of Contamination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| W4 WELL (Groundwater-Well) W2 WELL (Groundwater-Well) W3 WELL (Groundwater-Well) W6 WELL C1 (Groundwater-Well) W7 WELL (Groundwater-Well) W6 WELL E2 (Groundwater-Well) W6 WELL E3 (Groundwater-Well) W6 WELL C3 (Groundwater-Well) W6 WELL C3 (Groundwater-Well) JHW2 W6 WELL REDRILL (Groundwater-Well) JHW4R W6 (Groundwater-Well) W6 WELL C2 REDRILL (Groundwater-Well) W7 W6 | EPA Abandoned Contaminated Sites, EPA Hazardous Waste Generators, EPA Chemical Inventory/Storage Sites, EPA Toxic Release Inventory Sites, Permitted Wastewater Discharge Sites, Aboveground, Underground and Leaking Storage Tank Sites, Solid Waste Sites, Existing/Abandoned Mine Sites, Concentrated Animal Feeding Operations, Other Facilities, Commercial/Industrial/Transportation, High Intensity Residential, Low Intensity Residential, Urban Recreational Grasses, Row Crops, Fallow, Pasture / Hay, Septic Systems, Road Miles |
|                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

## Terms and Abbreviations

- Maximum Contaminant Level (MCL) The highest level of a contaminant allowed in drinking water.
- Treatment Technique (TT) A required process intended to reduce the level of a contaminant in drinking water.
- Health-Based A violation of either a MCL or TT.
- Non-Health-Based A violation that is not a MCL or TT.
- Action Level (AL) The concentration of a contaminant which, if exceeded, triggers treatment and other regulatory requirements.
- Maximum Residual Disinfectant Level (MRDL) The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
- Maximum Contaminant Level Goal (MCLG) The level of a contaminant in drinking
  water below which there is no known or expected risk to health. MCLGs allow for a
  margin of safety.
- Maximum Residual Disinfectant Level Goal (MRDLG) The level of a drinking water disinfectant, below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
- **Violation (No Abbreviation)** Failure to meet a Colorado Primary Drinking Water Regulation.
- Formal Enforcement Action (No Abbreviation) Escalated action taken by the State (due to the risk to public health, or number or severity of violations) to bring a non-compliant water system back into compliance.
- Variance and Exemptions (V/E) Department permission not to meet a MCL or treatment technique under certain conditions.
- **Gross Alpha (No Abbreviation)** Gross alpha particle activity compliance value. It includes radium-226, but excludes radon 222, and uranium.
- Picocuries per liter (pCi/L) Measure of the radioactivity in water.
- **Nephelometric Turbidity Unit (NTU)** Measure of the clarity or cloudiness of water. Turbidity in excess of 5 NTU is just noticeable to the typical person.
- Compliance Value (No Abbreviation) Single or calculated value used to determine if regulatory contaminant level (e.g. MCL) is met. Examples of calculated values are the 90<sup>th</sup> Percentile, Running Annual Average (RAA) and Locational Running Annual Average (LRAA).
- Average (x-bar) Typical value.
- Range (R) Lowest value to the highest value.
- Sample Size (n) Number or count of values (i.e. number of water samples collected).
- Parts per million = Milligrams per liter (ppm = mg/L) One part per million corresponds to one minute in two years or a single penny in \$10,000.
- Parts per billion = Micrograms per liter (ppb = ug/L) One part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.
- Not Applicable (N/A) Does not apply or not available.

- Level 1 Assessment A study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.
- Level 2 Assessment A very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

## **Detected Contaminants**

WIDEFIELD WSD routinely monitors for contaminants in your drinking water according to Federal and State laws. The following table(s) show all detections found in the period of January 1 to December 31, 2024 unless otherwise noted. The State of Colorado requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year, or the system is not considered vulnerable to this type of contamination. Therefore, some of our data, though representative, may be more than one-year-old. Violations and Formal Enforcement Actions, if any, are reported in the next section of this report.

**Note:** Only detected contaminants sampled within the last 5 years appear in this report. If no tables appear in this section, then no contaminants were detected in the last round of monitoring.

# Disinfectants Sampled in the Distribution System

TT Requirement: At least 95% of samples per period (month or quarter) must be at least 0.2 ppm

If sample size is less than 40 no more than 1 sample is below 0.2 ppm

Typical Sources: Water additive used to control microbes

| Disinfectant<br>Name | Time Period    | Results                                                          | Number of<br>Samples<br>Below Level | Sample<br>Size | TT<br>Violation | MRDL    |
|----------------------|----------------|------------------------------------------------------------------|-------------------------------------|----------------|-----------------|---------|
| Chlorine             | December, 2024 | Lowest period percentage of samples meeting TT requirement: 100% | 0                                   | 30             | No              | 4.0 ppm |

# Lead and Copper Sampled in the Distribution System <a href="Lead and Copper Individual Sample Results">Lead and Copper Individual Sample Results</a>

| Contaminant<br>Name | Time<br>Period                      | Tap<br>Sample<br>Range<br>Low -<br>High | 90 <sup>th</sup><br>Percentile | Sample<br>Size | Unit of<br>Measure | 90 <sup>th</sup><br>Percentile<br>AL | Sample<br>Sites<br>Above<br>AL | 90 <sup>th</sup> Percentile AL Exceedance | Typical Sources                                                               |
|---------------------|-------------------------------------|-----------------------------------------|--------------------------------|----------------|--------------------|--------------------------------------|--------------------------------|-------------------------------------------|-------------------------------------------------------------------------------|
| Copper              | 02/07/202<br>4 to<br>05/21/202<br>4 | 0.0185<br>to 0.971                      | 0.39                           | 62             | ppm                | 1.3                                  | 0                              | No                                        | Corrosion of<br>household plumbing<br>systems; Erosion of<br>natural deposits |
| Lead                | 02/07/202<br>4 to<br>05/21/202<br>4 | 0 to<br>93.5                            | 4                              | 62             | ppb                | 15                                   | 2                              | No                                        | Corrosion of<br>household plumbing<br>systems; Erosion of<br>natural deposits |

|                                     | Disinfection Byproducts Sampled in the Distribution System |         |                     |                |                    |     |      |                  |                                          |  |  |  |
|-------------------------------------|------------------------------------------------------------|---------|---------------------|----------------|--------------------|-----|------|------------------|------------------------------------------|--|--|--|
| Name                                | Year                                                       | Average | Range<br>Low - High | Sample<br>Size | Unit of<br>Measure | MCL | MCLG | MCL<br>Violation | Typical Sources                          |  |  |  |
| Total<br>Haloacetic<br>Acids (HAA5) | 2024                                                       | 10.15   | 0 to 22             | 16             | ppb                | 60  | N/A  | No               | Byproduct of drinking water disinfection |  |  |  |
| Total<br>Trihalometha<br>nes (TTHM) | 2024                                                       | 21.53   | 5 to 45             | 16             | ppb                | 80  | N/A  | No               | Byproduct of drinking water disinfection |  |  |  |

|                     | Radionuclides Sampled at the Entry Point to the Distribution System |         |                     |                |                    |     |      |                  |                             |  |  |
|---------------------|---------------------------------------------------------------------|---------|---------------------|----------------|--------------------|-----|------|------------------|-----------------------------|--|--|
| Contaminant<br>Name | Year                                                                | Average | Range<br>Low - High | Sample<br>Size | Unit of<br>Measure | MCL | MCLG | MCL<br>Violation | Typical Sources             |  |  |
| Combined Uranium    | 2023                                                                | 8.25    | 4.5 to 14           | 4              | ppb                | 30  | 0    | No               | Erosion of natural deposits |  |  |

|                     | Inorganic Contaminants Sampled at the Entry Point to the Distribution System |         |                     |                |                    |     |      |                  |                                                                                                           |  |  |
|---------------------|------------------------------------------------------------------------------|---------|---------------------|----------------|--------------------|-----|------|------------------|-----------------------------------------------------------------------------------------------------------|--|--|
| Contaminant<br>Name | Year                                                                         | Average | Range<br>Low - High | Sample<br>Size | Unit of<br>Measure | MCL | MCLG | MCL<br>Violation | Typical Sources                                                                                           |  |  |
| Barium              | 2023                                                                         | 0.06    | 0.02 to 0.1         | 5              | ppm                | 2   | 2    | No               | Discharge of<br>drilling wastes;<br>discharge from<br>metal refineries;<br>erosion of<br>natural deposits |  |  |

| Contaminant<br>Name | Year | Average | Range<br>Low - High | Sample<br>Size | Unit of<br>Measure | MCL | MCLG | MCL<br>Violation | Typical Sources                                                                                                          |
|---------------------|------|---------|---------------------|----------------|--------------------|-----|------|------------------|--------------------------------------------------------------------------------------------------------------------------|
| Chromium            | 2023 | 1.6     | 0 to 3.8            | 5              | ppb                | 100 | 100  | No               | Discharge from<br>steel and pulp<br>mills; erosion of<br>natural deposits                                                |
| Fluoride            | 2023 | 0.92    | 0.8 to 1.11         | 5              | ppm                | 4   | 4    | No               | Erosion of natural deposits water additive which promotes strong teeth; discharge from fertilizer and aluminum factories |
| Nitrate             | 2024 | 5.61    | 3.5 to 6.5          | 8              | ppm                | 10  | 10   | No               | Runoff from<br>fertilizer use;<br>leaching from<br>septic tanks,<br>sewage; erosion<br>of natural<br>deposits            |
| Nitrate-Nitrite     | 2024 | 6.3     | 6.1 to 6.5          | 2              | ppm                | 10  | 10   | No               | Runoff from<br>fertilizer use;<br>leaching from<br>septic tanks,<br>sewage; erosion                                      |

|                     | Inorganic Contaminants Sampled at the Entry Point to the Distribution System |         |                     |                |                    |     |      |                  |                                                                                                  |  |  |
|---------------------|------------------------------------------------------------------------------|---------|---------------------|----------------|--------------------|-----|------|------------------|--------------------------------------------------------------------------------------------------|--|--|
| Contaminant<br>Name | Year                                                                         | Average | Range<br>Low - High | Sample<br>Size | Unit of<br>Measure | MCL | MCLG | MCL<br>Violation | Typical Sources                                                                                  |  |  |
|                     |                                                                              |         |                     |                |                    |     |      |                  | of natural<br>deposits                                                                           |  |  |
| Selenium            | 2023                                                                         | 5.44    | 3.1 to 8.8          | 5              | ppb                | 50  | 50   | No               | Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines |  |  |

**Nitrate:** Nitrate in drinking water at levels above 10 ppm is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause blue baby syndrome. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant you should ask advice from your health care provider.

# Secondary Contaminants\*\*

\*\*Secondary standards are non-enforceable guidelines for contaminants that may cause cosmetic effects (such as skin, or tooth discoloration) or aesthetic effects (such as taste, odor, or color) in drinking water

| Contaminant<br>Name | Year | Average | Range<br>Low - High | Sample Size | Unit of<br>Measure | Secondary<br>Standard |
|---------------------|------|---------|---------------------|-------------|--------------------|-----------------------|
| Sodium              | 2023 | 139.2   | 0 to 220            | 5           | ppm                | N/A                   |

# **Unregulated Contaminants\*\*\***

EPA has implemented the Unregulated Contaminant Monitoring Rule (UCMR) to collect data for contaminants that are suspected to be present in drinking water and do not have health-based standards set under the Safe Drinking Water Act. EPA uses the results of UCMR monitoring to learn about the occurrence of unregulated contaminants in drinking water and to decide whether or not these contaminants will be regulated in the future. We performed monitoring and reported the analytical results of the monitoring to EPA in accordance with its Unregulated Contaminant Monitoring Rule (UCMR). Once EPA reviews the submitted results, the results are made available in the EPA's National Contaminant Occurrence Database (NCOD) (epa.gov/dwucmr/national-contaminant-occurrence-database-ncod) Consumers can review UCMR results by accessing the NCOD. Contaminants that were detected during our UCMR sampling and the corresponding analytical results are provided below.

| Contaminant Name                   | Year | Average | Range<br>Low - High | Sample Size | Unit of Measure |
|------------------------------------|------|---------|---------------------|-------------|-----------------|
| Lithium                            | 2024 | 21.6    | 0-34.1              | 3           | Ug/l            |
| Pefluorobutanoic Acid (PFBA)       | 2024 | 0.0277  | 0-0.0277            | 3           | Ug/l            |
| Perfluorohexanoic acid (PFHxA)     | 2024 | 0.0147  | 0-0.0147            | 3           | Ug/l            |
| perfluoropentanoic acid<br>(PFPeA) | 2024 | 0.0483  | 0-0.0915            | 3           | Ug/l            |

\*\*\*More information about the contaminants that were included in UCMR monitoring can be found at: <a href="mailto:drinktap.org/Water-Info/Whats-in-My-Water/Unregulated-Contaminant-Monitoring-Rule-UCMR">drinktap.org/Water-Info/Whats-in-My-Water/Unregulated-Contaminant-Monitoring-Rule-UCMR</a>. Learn more about the EPA UCMR at: <a href="mailto:epa.gov/dwucmr/learn-about-unregulated-contaminant-monitoring-rule">epa.gov/dwucmr/learn-about-unregulated-contaminant-monitoring-rule</a> or contact the Safe Drinking Water Hotline at (800) 426-4791 or <a href="mailto:epa.gov/ground-water-and-drinking-water">epa.gov/ground-water-and-drinking-water</a>.

Violations, Significant Deficiencies, and Formal Enforcement Actions

No Violations or Formal Enforcement Actions

# SECURITY WATER DISTRICT 2024 Drinking Water Quality Report Covering Data For Calendar Year 2024

Public Water System ID: CO0121775

## Esta es información importante. Si no la pueden leer, necesitan que alguien se la traduzca.

We are pleased to present to you this year's water quality report. Our constant goal is to provide you with a safe and dependable supply of drinking water. Please contact James Jones at 719-392-3475 with any questions or for public participation opportunities that may affect water quality. Please see the water quality data from our wholesale system(s) (either attached or included in this report) for additional information about your drinking water.

## **General Information**

All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline (1-800-426-4791) or by visiting epa.gov/ground-water-and-drinking-water.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV-AIDS or other immune system disorders, some elderly, and infants can be particularly at risk of infections. These people should seek advice about drinking water from their health care providers. For more information about contaminants and potential health effects, or to receive a copy of the U.S. Environmental Protection Agency (EPA) and the U.S. Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and microbiological contaminants call the EPA Safe Drinking Water Hotline at (1-800-426-4791).

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:

- •Microbial contaminants: viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- •Inorganic contaminants: salts and metals, which can be naturallyoccurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- •Pesticides and herbicides: may come from a variety of sources, such as agriculture, urban storm water runoff, and residential uses.
- •Radioactive contaminants: can be naturally occurring or be the result of oil and gas production and mining activities.
- •Organic chemical contaminants: including synthetic and volatile organic chemicals, which are byproducts of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff, and septic systems.

In order to ensure that tap water is safe to drink, the Colorado Department of Public Health and Environment prescribes regulations limiting the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration regulations establish limits for contaminants in bottled water that must provide the same protection for public health.

## **Lead in Drinking Water**

Lead can cause serious health problems, especially for pregnant women, infants (both formula-fed and breastfed), and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water and removing lead pipes but cannot control the variety of materials used in plumbing components in your home. Because lead levels may vary over time, lead exposure is possible even when your tap sampling results do not detect lead at one point in time.

You can help protect yourself and your family by identifying and removing lead materials within your home plumbing and taking steps to reduce your family's risk. Using a filter, certified by an American National Standards Institute accredited certifier to reduce lead, is effective in reducing lead exposures. Follow the instructions provided with the filter to ensure the filter is used properly.

Use only cold water for drinking, cooking, and making baby formula. Boiling water does not remove lead from water. Before using tap water for drinking, cooking, or making baby formula, flush your pipes for several minutes. You can do this by running your tap, taking a shower, doing laundry or a load of dishes. If you have a lead service line or galvanized requiring replacement service line, you may need to flush your pipes for a longer period. If you are concerned about lead in your water and wish to have your water tested, contact James Jones at 719-392-3475. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available at epa.gov/safewater/lead

## Service Line Inventory

New state and federal laws require us to inventory all water service lines in our service area to classify the material. A service line is the underground pipe that carries water from the water main, likely in the street, into your home or building. If you would like to view a copy of our service line inventory or have questions about the material of your service line, contact James Jones at 719-392-3475

## **Source Water Assessment and Protection (SWAP)**

The Colorado Department of Public Health and Environment may have provided us with a Source Water Assessment Report for our water supply. For general information or to obtain a copy of the report please visit <a href="wqcdcompliance.com/ccr">wqcdcompliance.com/ccr</a>. The report is located under "Guidance: Source Water Assessment Reports". Search the table using our system name or ID, or by contacting James Jones at 719-392-3475. The Source Water Assessment Report provides a screening-level evaluation of potential contamination that <a href="could">could</a> occur. It <a href="does not">does not</a> mean that the contamination <a href="has or will">has or will</a> occur. We can use this information to evaluate the need to improve our current

water treatment capabilities and prepare for future contamination threats. This can help us ensure that quality finished water is delivered to your homes. In addition, the source water assessment results provide a starting point for developing a source water protection plan. Potential sources of contamination in our source water area are listed below. Please contact us to learn more about what you can do to help protect your drinking water sources, any questions about the Drinking Water Quality Report, to learn more about our system, or to attend scheduled public meetings. We want you, our valued customers, to be informed about the services we provide and the quality water we deliver to you every day.

| Sources (Water Type - Source Type)                  | Potential Source(s) of Contamination                        |
|-----------------------------------------------------|-------------------------------------------------------------|
| V4 WELL (Groundwater-Well)                          |                                                             |
| V5 WELL (Groundwater-Well)                          |                                                             |
| V7 WELL (Groundwater-Well)                          |                                                             |
| V8 WELL (Groundwater-Well)                          |                                                             |
| W12 WELL (Groundwater-Well)                         |                                                             |
| W8 WELL (Groundwater-Well)                          |                                                             |
| S12 WELL (Groundwater-Well)                         |                                                             |
| PURCHASED FROM CO0121300 (Surface Water-Consecutive |                                                             |
| Connection) (FVA)                                   |                                                             |
| CS WELL 13 (Groundwater-Well)                       | EPA Abandoned Contaminated Sites, EPA Hazardous Waste       |
| PURCHASED FROM CO0121150 (Surface Water-Consecutive | Generators, EPA Chemical Inventory/Storage Sites, EPA Toxic |
| Connection)(CSU)                                    | Release Inventory Sites, Aboveground, Underground and       |
| S13 WELL (Groundwater-Well)                         | Leaking Storage Tank Sites, Solid Waste Sites,              |
| S14 WELL (Groundwater-Well)                         | Existing/Abandoned Mine Sites, Other Facilities,            |
| S15 WELL (Groundwater-Well)                         | Commercial/Industrial/Transportation, High Intensity        |
| S16 WELL (Groundwater-Well)                         | Residential, Low Intensity Residential, Urban Recreational  |
| S17 WELL (Groundwater-Well)                         | Grasses, Row Crops, Pasture / Hay, Deciduous Forest, Septic |
| FV4 WELL (Groundwater-Well)                         | Systems, Road Miles                                         |
| S8 WELL (Groundwater-Well)                          |                                                             |
| REAM WELL NO 1 R-1 (Groundwater-Well)               |                                                             |
| REAM WELL NO 2 R-2 (Groundwater-Well)               |                                                             |
| S2 WELL (Groundwater-Well)                          |                                                             |
| S4 WELL (Groundwater-Well)                          |                                                             |
| S7 WELL (Groundwater-Well)                          |                                                             |
| S10 WELL (Groundwater-Well)                         |                                                             |
| S11 WELL (Groundwater-Well)                         |                                                             |
|                                                     |                                                             |
|                                                     |                                                             |

#### **Our Water Sources**

#### **Terms and Abbreviations**

- Maximum Contaminant Level (MCL) The highest level of a contaminant allowed in drinking water.
- Treatment Technique (TT) A required process intended to reduce the level of a contaminant in drinking water.
- **Health-Based** A violation of either a MCL or TT.
- **Non-Health-Based** A violation that is not a MCL or TT.
- Action Level (AL) The concentration of a contaminant which, if exceeded, triggers treatment and other regulatory requirements.
- Maximum Residual Disinfectant Level (MRDL) The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
- Maximum Contaminant Level Goal (MCLG) The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
- Maximum Residual Disinfectant Level Goal (MRDLG) The level of a drinking water disinfectant, below which there
  is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial
  contaminants.
- Violation (No Abbreviation) Failure to meet a Colorado Primary Drinking Water Regulation.
- **Formal Enforcement Action (No Abbreviation)** Escalated action taken by the State (due to the risk to public health, or number or severity of violations) to bring a non-compliant water system back into compliance.
- Variance and Exemptions (V/E) Department permission not to meet a MCL or treatment technique under certain conditions.
- Gross Alpha (No Abbreviation) Gross alpha particle activity compliance value. It includes radium-226, but excludes radon 222, and uranium.
- **Picocuries per liter (pCi/L)** Measure of the radioactivity in water.
- **Nephelometric Turbidity Unit (NTU)** Measure of the clarity or cloudiness of water. Turbidity in excess of 5 NTU is just noticeable to the typical person.
- Compliance Value (No Abbreviation) Single or calculated value used to determine if regulatory contaminant level (e.g. MCL) is met. Examples of calculated values are the 90<sup>th</sup> Percentile, Running Annual Average (RAA) and Locational Running Annual Average (LRAA).
- **Average (x-bar)** Typical value.
- Range (R) Lowest value to the highest value.
- Sample Size (n) Number or count of values (i.e. number of water samples collected).
- Parts per million = Milligrams per liter (ppm = mg/L) One part per million corresponds to one minute in two years or a single penny in \$10,000.
- Parts per billion = Micrograms per liter (ppb = ug/L) One part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.
- Not Applicable (N/A) Does not apply or not available.
- **Level 1 Assessment** A study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.
- Level 2 Assessment A very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

## **Detected Contaminants**

SECURITY WATER DISTRICT routinely monitors for contaminants in your drinking water according to Federal and State laws. The following table(s) show all detections found in the period of January 1 to December 31, 2024 unless otherwise noted. The State of Colorado requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year, or the system is not considered vulnerable to this type of contamination. Therefore, some of our data, though representative, may be more than one-year-old. Violations and Formal Enforcement Actions, if any, are reported in the next section of this report.

**Note:** Only detected contaminants sampled within the last 5 years appear in this report. If no tables appear in this section, then no contaminants were detected in the last round of monitoring.

## Disinfectants Sampled in the Distribution System

**TT Requirement**: At least 95% of samples per period (month or quarter) must be at least 0.2 ppm <u>OR</u>

If sample size is less than 40 no more than 1 sample is below 0.2 ppm **Typical Sources:** Water additive used to control microbes

| Disinfectant<br>Name | Time Period    | Results                                                          | Number of Samples<br>Below Level | Sample<br>Size | TT<br>Violation | MRDL    |
|----------------------|----------------|------------------------------------------------------------------|----------------------------------|----------------|-----------------|---------|
| Chlorine             | December, 2024 | Lowest period percentage of samples meeting TT requirement: 100% | 0                                | 20             | No              | 4.0 ppm |

|                     |                                |                                         | Lead and                       | Copper Sa      | ampled in t        | he Distributi                        | on System                      |                                           |                                                                                        |
|---------------------|--------------------------------|-----------------------------------------|--------------------------------|----------------|--------------------|--------------------------------------|--------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------|
| Contaminant<br>Name | Time<br>Period                 | Tap<br>Sample<br>Range<br>Low –<br>High | 90 <sup>th</sup><br>Percentile | Sample<br>Size | Unit of<br>Measure | 90 <sup>th</sup><br>Percentile<br>AL | Sample<br>Sites<br>Above<br>AL | 90 <sup>th</sup> Percentile AL Exceedance | Typical<br>Sources                                                                     |
| Copper              | 7/2/2024 to<br>7/29/2024       | 0.16 to 1.6                             | 1.1                            | 30             | ppm                | 1.3                                  | 2                              | No                                        | Corrosion of<br>household<br>plumbing<br>systems;<br>Erosion of<br>natural<br>deposits |
| Lead                | 07/02/2024<br>to<br>07/29/2024 | 0 to 10                                 | 2.5                            | 30             | ppb                | 15                                   | 0                              | No                                        | Corrosion of<br>household<br>plumbing<br>systems;<br>Erosion of<br>natural<br>deposits |

| Disinfection Byproducts Sampled in the Distribution System |      |         |                     |                    |                    |     |      |                  |                                             |  |  |
|------------------------------------------------------------|------|---------|---------------------|--------------------|--------------------|-----|------|------------------|---------------------------------------------|--|--|
| Name                                                       | Year | Average | Range<br>Low – High | Samp<br>le<br>Size | Unit of<br>Measure | MCL | MCLG | MCL<br>Violation | Typical Sources                             |  |  |
| Total<br>Haloacetic<br>Acids<br>(HAA5)                     | 2024 | 8.22    | 0 to 31.5           | 16                 | ppb                | 60  | N/A  | No               | Byproduct of drinking<br>water disinfection |  |  |
| Total<br>Trihalome<br>thanes<br>(TTHM)                     | 2024 | 19.3    | 0.53 to 56.96       | 16                 | ppb                | 80  | N/A  | No               | Byproduct of drinking<br>water disinfection |  |  |

|                     | Radionuclides Sampled at the Entry Point to the Distribution System |         |                     |                |                    |     |      |                  |                             |  |  |  |  |  |
|---------------------|---------------------------------------------------------------------|---------|---------------------|----------------|--------------------|-----|------|------------------|-----------------------------|--|--|--|--|--|
| Contaminant<br>Name | Year                                                                | Average | Range<br>Low – High | Sample<br>Size | Unit of<br>Measure | MCL | MCLG | MCL<br>Violation | Typical Sources             |  |  |  |  |  |
| Combined<br>Radium  | 2024                                                                | 2.06    | 2.06 to 2.06        | 1              | pCi/L              | 5   | 0    | No               | Erosion of natural deposits |  |  |  |  |  |
| Combined<br>Uranium | 2023                                                                | 4.8     | 4.8 to 4.8          | 1              | ppb                | 30  | 0    | No               | Erosion of natural deposits |  |  |  |  |  |

|                     | Inorganic Contaminants Sampled at the Entry Point to the Distribution System |         |                     |                |                    |     |      |                  |                                                                                                                           |  |  |  |  |  |
|---------------------|------------------------------------------------------------------------------|---------|---------------------|----------------|--------------------|-----|------|------------------|---------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Contaminant<br>Name | Year                                                                         | Average | Range<br>Low – High | Sample<br>Size | Unit of<br>Measure | MCL | MCLG | MCL<br>Violation | Typical Sources                                                                                                           |  |  |  |  |  |
| Barium              | 2023                                                                         | 0.12    | 0.12 to 0.12        | 1              | ppm                | 2   | 2    | No               | Discharge of<br>drilling wastes;<br>discharge from<br>metal refineries;<br>erosion of natural<br>deposits                 |  |  |  |  |  |
| Chromium            | 2023                                                                         | 1.1     | 1.1 to 1.1          | 1              | ppb                | 100 | 100  | No               | Discharge from<br>steel and pulp<br>mills; erosion of<br>natural deposits                                                 |  |  |  |  |  |
| Fluoride            | 2023                                                                         | 0.72    | 0.72 to 0.72        | 1              | ppm                | 4   | 4    | No               | Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories |  |  |  |  |  |
| Nitrate             | 2024                                                                         | 5.95    | 5.2 to 6.8          | 4              | ppm                | 10  | 10   | No               | Runoff from<br>fertilizer use;<br>leaching from<br>septic tanks,<br>sewage; erosion of<br>natural deposits                |  |  |  |  |  |
| Selenium            | 2023                                                                         | 2.9     | 2.9 to 2.9          | 1              | ppb                | 50  | 50   | No               | Discharge from<br>petroleum and<br>metal refineries;<br>erosion of natural<br>deposits; discharge<br>from mines           |  |  |  |  |  |

**Nitrate**: *Nitrate in drinking water at levels above 10 ppm* is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause blue baby syndrome. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant you should ask advice from your health care provider.

## Secondary Contaminants\*\*

\*\*Secondary standards are <u>non-enforceable</u> guidelines for contaminants that may cause cosmetic effects (such as skin, or tooth discoloration) or aesthetic effects (such as taste, odor, or color) in drinking water.

| Contaminant<br>Name | Year | Average | Range<br>Low – High | Sample<br>Size | Unit of<br>Measure | Secondary Standard |
|---------------------|------|---------|---------------------|----------------|--------------------|--------------------|
| Sodium              | 2023 | 42      | 42 to 42            | 1              | ppm                | N/A                |
| Calcium             | 2023 | 85      | 85 to 85            | 1              | ppm                | N/A                |
| Magnesium           | 2023 | 15      | 15 to 15            | 1              | ppm                | N/A                |

## Unregulated Contaminants\*\*\*

EPA has implemented the Unregulated Contaminant Monitoring Rule (UCMR) to collect data for contaminants that are suspected to be present in drinking water and do not have health-based standards set under the Safe Drinking Water Act. EPA uses the results of UCMR monitoring to learn about the occurrence of unregulated contaminants in drinking water and to decide whether or not these contaminants will be regulated in the future. We performed monitoring and reported the analytical results of the monitoring to EPA in accordance with its Unregulated Contaminant Monitoring Rule (UCMR). Once EPA reviews the submitted results, the results are made available in the EPA's National Contaminant Occurrence Database (NCOD) (<a href="mailto:epa\_gov/dwucmr/national-contaminant-occurrence-database-ncod">epa\_gov/dwucmr/national-contaminant-occurrence-database-ncod</a>) Consumers can review UCMR results by accessing the NCOD. Contaminants that were detected during our UCMR sampling and the corresponding analytical results are provided below.

| Contaminant Name                | Year | Average | Range<br>Low – High | Sample Size | Unit of Measure |
|---------------------------------|------|---------|---------------------|-------------|-----------------|
| Lithium                         | 2024 | 18.9    | 18.9 to 33.3        | 3           | ppb             |
| Perfluorobutanoic acid (PFBA)   | 2024 | 0.017   | 0.006 to 0.028      | 2           | ppb             |
| Perfluoropentanoic acid (PFPeA) | 2024 | 0.0181  | 0.0064 to 0.0297    | 2           | ppb             |

\*\*\*More information about the contaminants that were included in UCMR monitoring can be found at: <a href="mailto:drinktap.org/Water-Info/Whats-in-My-Water/Unregulated-Contaminant-Monitoring-Rule-UCMR">drinktap.org/Water-Info/Whats-in-My-Water/Unregulated-Contaminant-Monitoring-Rule-UCMR</a>. Learn more about the EPA UCMR at: <a href="mailto:epa.gov/dwucmr/learn-about-unregulated-contaminant-monitoring-rule">epa.gov/dwucmr/learn-about-unregulated-contaminant-monitoring-rule</a> or contact the Safe Drinking Water Hotline at (800) 426-4791 or <a href="mailto:epa.gov/ground-water-and-drinking-water">epa.gov/ground-water-and-drinking-water</a>.

No Violations, Significant Deficiencies, or Formal Enforcement Actions



# Fountain Valley Authority (PWSID # CO0121300) 2025 Water Quality Report Containing Data for 2024

#### WATER SOURCE INFORMATION

Fountain Valley Authority (FVA) treats surface water received from the Fryingpan-Arkansas Project. The Fryingpan-Arkansas Project is a system of pipes and tunnels that collects water in the Hunter-Fryingpan Wilderness Area near Aspen. Waters collected from the system are diverted to the Arkansas River, near Buena Vista, and then flows approximately 150 miles downstream to Pueblo Reservoir. From Pueblo Reservoir, the water travels through a pipeline to the water treatment plant.

In 2024, FVA was offline for a short period of time. The water transmission system was fed treated water from the Colorado Springs Utilities system. The Water Quality Report for Colorado Springs Utilities is attached at the end of this report.

#### SOURCE WATER ASSESSMENT AND PROTECTION (SWAP)

The Colorado Department of Public Health and Environment may have provided us with a Source Water Assessment Report for our water supply. For general information or to obtain a copy of the report please visit <a href="wqcdcompliance.com/ccr">wqcdcompliance.com/ccr</a>. The report is located under "Guidance: Source Water Assessment Reports". Search the table using our system name or ID, or by contacting Colorado Springs Utilities Laboratory Services at 719-668-4560. The Source Water Assessment Report provides a screening-level evaluation of potential contamination that *could* occur. It *does not* mean that the contamination *has or will* occur. We can use this information to evaluate the need to improve our current water treatment capabilities and prepare for future contamination threats. This can help us ensure that quality finished water is delivered to your homes. In addition, the source water assessment results provide a starting point for developing a source water protection plan. Potential sources of contamination in our source water area are listed below.

## Potential sources of contamination to our source water areas may come from:

- EPA Superfund Sites
- EPA Abandoned Contaminated Sites
- EPA Hazardous Waste Generators
- EPA Chemical Inventory/Storage Sites
- EPA Toxic Release Inventory Sites
- Permitted Wastewater Discharge Sites
- Aboveground, Underground and Leaking Storage Tank Sites
- Solid Waste Sites
- Existing/Abandoned Mine Sites
- Concentrated Animal Feeding Operations
- Other Facilities
- Commercial/Industrial Transportation
- High-and-Low-Intensity Residential
- Urban Recreational Grasses
- Quarries/Strip Mines/Gravel Pits
- Agricultural Land (row crops, small grain, pasture/hay, orchards/vineyards, fallow and other)
- Forest
- Septic Systems

- Oil/Gas Wells
- Road Miles

Please contact us to learn more about what you can do to help protect your drinking water sources, any questions about the Drinking Water Quality Report, to learn more about our system, or to attend scheduled public meetings. We want you, our valued customers, to be informed about the services we provide and the quality water we deliver to you every day.

#### **GENERAL INFORMATION**

All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline (1-800-426-4791) or by visiting epa.gov/ground-water-and-drinking-water.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV-AIDS or other immune system disorders, some elderly, and infants can be particularly at risk of infections. These people should seek advice about drinking water from their health care providers. For more information about contaminants and potential health effects, or to receive a copy of the U.S. Environmental Protection Agency (EPA) and the U.S. Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and microbiological contaminants call the EPA Safe Drinking Water Hotline at (1-800-426-4791).

#### **CONTAMINANT INFORMATION**

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:

- Microbial contaminants: viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants: salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides: may come from a variety of sources, such as agriculture, urban storm water runoff, and residential uses.
- Radioactive contaminants: can be naturally occurring or be the result of oil and gas production and mining activities.
- Organic chemical contaminants: including synthetic and volatile organic chemicals, which are byproducts of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff, and septic systems.

In order to ensure that tap water is safe to drink, the Colorado Department of Public Health and Environment prescribes regulations limiting the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration regulations establish limits for contaminants in bottled water that must provide the same protection for public health.

#### **LEAD IN DRINKING WATER**

Lead can cause serious health effects in people of all ages, especially pregnant people, infants (both formula-fed and breastfed), and young children. Lead in drinking water is primarily from materials and parts used in service lines and in home plumbing. We are responsible for providing high quality drinking water and removing lead pipes but cannot control the variety of materials used in the plumbing in your home. Because lead levels may vary over time, lead exposure is possible even when your tap sampling results do not detect lead at one point in time.

You can help protect yourself and your family by identifying and removing lead materials within your home plumbing and taking steps to reduce your family's risk. Using a filter, certified by an American National Standards Institute accredited certifier to reduce lead, is effective in reducing lead exposures. Follow the instructions provided with the filter to ensure the filter is used properly. Use only cold water for drinking, cooking, and making baby formula. Boiling water does not remove lead from water. Before using tap water for drinking, cooking, or making baby formula, flush your pipes for several minutes. You can do this by running your tap, taking a shower, doing laundry or a load of dishes. If you have a lead service line or galvanized requiring replacement service line, you may need to flush your pipes for a longer period. If you are concerned about lead in your water and wish to have your water tested, contact your water provider. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available at <a href="mailto:epa.gov/safewater/lead">epa.gov/safewater/lead</a>.

#### **Service Line Inventory**

New state and federal laws require water systems to inventory all water service lines in their service area to classify the material. A service line is the underground pipe that carries water from the water main, likely in the street, into your home or building. If you would like to view a copy of the service line inventory or have questions about the material of your service line, please contact your water service provider.

#### **FLUORIDE INFORMATION**

Fluoride is a compound found naturally in many places, including soil, food, plants, animals, and the human body. It is also found naturally in FVA's and Colorado Springs Utilities' water sources. Neither system adds additional fluoride to the treated water. Any fluoride in the treated water results from what occurs naturally in the source water.

#### **DEFINITIONS**

- Maximum Contaminant Level (MCL) The highest level of a contaminant allowed in drinking water.
- Treatment Technique (TT) A required process intended to reduce the level of a contaminant in drinking water.
- **Health-Based** A violation of either a MCL or TT.
- Non-Health-Based A violation that is not a MCL or TT.
- Action Level (AL) The concentration of a contaminant which, if exceeded, triggers treatment and other regulatory requirements.
- **Maximum Residual Disinfectant Level (MRDL)** The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
- Maximum Contaminant Level Goal (MCLG) The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
- Maximum Residual Disinfectant Level Goal (MRDLG) The level of a drinking water disinfectant, below which there is no
  known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial
  contaminants.
- Violation (No Abbreviation) Failure to meet a Colorado Primary Drinking Water Regulation.
- **Formal Enforcement Action (No Abbreviation)** Escalated action taken by the State (due to the risk to public health, or number or severity of violations) to bring a non-compliant water system back into compliance.
- Variance and Exemptions (V/E) Department permission not to meet a MCL or treatment technique under certain conditions.
- **Gross Alpha (No Abbreviation)** Gross alpha particle activity compliance value. It includes radium-226, but excludes radon 222, and uranium.
- **Picocuries per liter (pCi/L)** Measure of the radioactivity in water.
- **Nephelometric Turbidity Unit (NTU)** Measure of the clarity or cloudiness of water. Turbidity in excess of 5 NTU is just noticeable to the typical person.
- Compliance Value (No Abbreviation) Single or calculated value used to determine if regulatory contaminant level (e.g. MCL) is met. Examples of calculated values are the 90<sup>th</sup> Percentile, Running Annual Average (RAA) and Locational Running Annual Average (LRAA).
- Average (x-bar) Typical value.
- Range (R) Lowest value to the highest value.
- Sample Size (n) Number or count of values (i.e. number of water samples collected).
- Parts per million = Milligrams per liter (ppm = mg/L) One part per million corresponds to one minute in two years or a single penny in \$10,000.
- Parts per billion = Micrograms per liter (ppb = ug/L) One part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.
- Not Applicable (N/A) Does not apply or not available.
- **Level 1 Assessment** A study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

| • | <b>Level 2 Assessment</b> – A very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions. |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |                                                                                                                                                                                                                                                                          |
|   |                                                                                                                                                                                                                                                                          |
|   |                                                                                                                                                                                                                                                                          |
|   |                                                                                                                                                                                                                                                                          |
|   |                                                                                                                                                                                                                                                                          |
|   |                                                                                                                                                                                                                                                                          |
|   |                                                                                                                                                                                                                                                                          |
|   |                                                                                                                                                                                                                                                                          |
|   |                                                                                                                                                                                                                                                                          |
|   |                                                                                                                                                                                                                                                                          |
|   |                                                                                                                                                                                                                                                                          |
|   |                                                                                                                                                                                                                                                                          |
|   |                                                                                                                                                                                                                                                                          |
|   |                                                                                                                                                                                                                                                                          |

#### **TABLE OF DETECTED CONTAMINANTS**

FOUNTAIN VALLEY AUTHORITY routinely monitors for contaminants in your drinking water according to Federal and State laws. The following table(s) show all detections found in the period of January 1 to December 31, 2024 unless otherwise noted. The State of Colorado requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year, or the system is not considered vulnerable to this type of contamination. Therefore, some of our data, though representative, may be more than one-year-old. Violations and Formal Enforcement Actions, if any, are reported in the next section of this report.

**Note:** Only detected contaminants sampled within the last 5 years appear in this report. If no tables appear in this section, then no contaminants were detected in the last round of monitoring.

#### **Detected Contaminants Table**

Fountain Valley Authority (PWSID CO0121300)

## **Inorganic Contaminants**

#### Monitored at the Treatment Plant

| Contaminant           | MCL | MCLG | Units | Range<br>Detected | Average<br>Detected | MCL<br>Violation | Sample Dates | Possible Source(s) of Contamination                                                              |  |  |  |
|-----------------------|-----|------|-------|-------------------|---------------------|------------------|--------------|--------------------------------------------------------------------------------------------------|--|--|--|
| Barium                | 2   | 2    | ppm   | 0.05 – 0.05       | 0.05                | No               | April 2024   | Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits       |  |  |  |
| Fluoride              | 4   | 4    | ppm   | 0.44 – 0.44       | 0.44                | No               | April 2024   | Erosion of natural deposits; discharge from fertilizer and aluminum factories                    |  |  |  |
| Nitrate (as Nitrogen) | 10  | 10   | ppm   | 0.19 - 0.19       | 0.19                | No               | July 2024    | Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits      |  |  |  |
| Selenium              | 50  | 50   | ppb   | 5.8 – 5.8         | 1.0                 | No               | April 2024   | Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines |  |  |  |
| Sodium                | N/A | N/A  | ppm   | 21.5 – 21.5       | 21.5                | No               | April 2024   | Erosion of natural deposits                                                                      |  |  |  |

#### **Synthetic Organic Contaminants**

#### Monitored at the Treatment Plant

| The most at the measurement and |     |      |       |          |          |           |               |                                         |  |  |  |
|---------------------------------|-----|------|-------|----------|----------|-----------|---------------|-----------------------------------------|--|--|--|
| Contaminant                     | MCL | MCLG | Units | Range    | Average  | MCL       | Sample Dates  | Possible Source(s) of Contamination     |  |  |  |
|                                 |     |      |       | Detected | Detected | Violation |               |                                         |  |  |  |
| 2,4-D                           | 70  | 70   | ppm   | 0 – 0.23 | 0.12     | No        | Apr, Oct 2024 | Runoff from herbicide used on row crops |  |  |  |
|                                 |     |      |       |          |          |           |               |                                         |  |  |  |

**Turbidity**Continuously monitored at the Treatment Plant

| Contaminant | TT Requirement                                                    | Level Detected                                                     | TT        | Sample Dates | Possible Source(s) of Contamination |
|-------------|-------------------------------------------------------------------|--------------------------------------------------------------------|-----------|--------------|-------------------------------------|
|             |                                                                   |                                                                    | Violation |              |                                     |
| Turbidity   | Maximum 1 NTU for any single measurement                          | Highest Single<br>Measurement: 0.15<br>NTU, October                | No        | Monthly 2024 | Soil Runoff                         |
| Turbidity   | In any month, at least 95% of samples<br>must be less than 0.3NTU | Lowest Monthly percentage of samples meeting TT requirement: 100%, | No        | Monthly 2024 | Soil Runoff                         |

## Total Organic Carbon (Disinfection Byproducts Precursor) Removal Ratio of Raw and Finished Water

## Monitored at the Treatment Plant

| Contaminant                   | MCL                        | MCLG | Units | Range<br>Low - High | Average | TT Violation | Sample Dates                        | Possible Source(s) of Contamination  |
|-------------------------------|----------------------------|------|-------|---------------------|---------|--------------|-------------------------------------|--------------------------------------|
| Total Organic Carbon<br>(TOC) | TT minimum<br>ratio = 1.00 | N/A  | Ratio | 1 – 1.48            | 1.19    | No           | Monthly - Running<br>Annual Average | Naturally present in the environment |

## Radionuclides

## Monitored at the Treatment Plant

| Contaminant     | MCL | MCLG | Units | Range<br>Detected | Average<br>Detected | MCL<br>Violation | Sample Dates | Possible Source(s) of Contamination |
|-----------------|-----|------|-------|-------------------|---------------------|------------------|--------------|-------------------------------------|
| Gross Alpha     | 15  | 0    | pCi/L | 1.3-1.3           | 1.3                 | No               | June 2020    | Erosion of natural deposits         |
| Combined Radium | 5   | 0    | pCi/L | 0.8-0.8           | 0.8                 | No               | June 2020    | Erosion of natural deposits         |

**Violations, Significant Deficiencies, and Formal Enforcement Actions** 

**No Violations or Formal Enforcement Actions** 

## **WANT MORE INFORMATION**

For questions concerning this report, please call Colorado Springs Utilities Laboratory Services at (719) 668-4560.



# Colorado Springs Utilities (PWSID # CO0121150) 2025 Water Quality Report Containing data from 2024

#### WATER SOURCE INFORMATION

Colorado Springs Utilities water is blended from multiple sources, including surface water and purchased water. Your water source may vary throughout the year.

#### **Mountain Water Sources**

With no major water source nearby, much of Colorado Springs Utilities raw water collection system originates from nearly 200 miles away, near Aspen, Leadville, and Breckenridge. Almost 75 percent of our water originates from mountain streams. Water from these streams is collected and stored in numerous reservoirs along the Continental Divide. Collection systems in this area consist of the Homestake, Fryingpan-Arkansas, Twin Lakes, and Blue River systems.

The majority of this raw water is transferred to our city through pipelines that help protect it from contamination, such as herbicides, pesticides, heavy metals and other chemicals. After the long journey, water is stored locally at Rampart Reservoir and the Catamount reservoirs on Pikes Peak.

#### **Local Surface Sources**

To supplement the water received from the mountain sources, Colorado Springs Utilities is able to divert water from local surface water collection systems including:

- North and South Slopes of Pikes Peak Catamount Reservoirs, Crystal Reservoir, South Slope Reservoirs and tributaries
- North and South Cheyenne Creeks
- Fountain Creek
- Monument Creek Pikeview Reservoir
- Northfield Watershed Rampart and Northfield Reservoirs
- Pueblo Reservoir

#### **Purchased Water Source**

Fountain Valley Authority or FVA (PWSID#CO0121300) receives water from the Fryingpan-Arkansas Project – a system of pipes and tunnels that collects water in the Hunter- Fryingpan Wilderness Area near Aspen. Waters collected from this system are diverted to the Arkansas River, near Buena Vista, and then flow about 150 miles downstream to Pueblo Reservoir. From there, the water travels through a pipeline to a water treatment plant before being delivered to Colorado Springs.

All water sources are treated at one of our treatment plants (or in the case of FVA water at FVA's treatment plant) prior to entering our drinking water distribution system; an intricate system of tanks, pumps and pipes that ultimately deliver water to your home or business.

#### SOURCE WATER ASSESSMENT AND PROTECTION (SWAP)

The Colorado Department of Public Health and Environment may have provided us with a Source Water Assessment Report for our water supply. For general information or to obtain a copy of the report please visit <a href="wqcdcompliance.com/ccr">wqcdcompliance.com/ccr</a>. The report is located under "Guidance: Source Water Assessment Reports". Search the table using our system name or ID, or by contacting Colorado Springs Utilities Laboratory Services at 719-668-4560. The Source Water Assessment Report provides a screening-level evaluation of potential contamination that *could* occur. It *does not* mean that the contamination *has or will* occur. We can use this information to evaluate the need to improve our current water treatment capabilities and prepare for future contamination threats. This can help us ensure that quality finished water is delivered to your homes. In addition, the source water assessment results provide a starting point for developing a source water protection plan. Potential sources of contamination in our source water area are listed below.

#### Potential sources of contamination to our source water areas may come from:

- EPA Superfund Sites
- EPA Abandoned Contaminated Sites
- EPA Hazardous Waste Generators
- EPA Chemical Inventory/Storage Sites
- EPA Toxic Release Inventory Sites
- Permitted Wastewater Discharge Sites
- Aboveground, Underground and Leaking Storage Tank Sites
- Solid Waste Sites
- Existing/Abandoned Mine Sites
- Concentrated Animal Feeding Operations
- Other Facilities
- Commercial/Industrial Transportation
- High-and-Low-Intensity Residential
- Urban Recreational Grasses
- Quarries/Strip Mines/Gravel Pits
- Agricultural Land (row crops, small grain, pasture/hay, orchards/vineyards, fallow and other)
- Forest
- Septic Systems
- Oil/Gas Wells
- Road Miles

#### **LEAD IN DRINKING WATER**

Lead can cause serious health effects in people of all ages, especially pregnant people, infants (both formula-fed and breastfed), and young children. Lead in drinking water is primarily from materials and parts used in service lines and in home plumbing. We are responsible for providing high quality drinking water and removing lead pipes but cannot control the variety of materials used in the plumbing in your home. Because lead levels may vary over time, lead exposure is possible even when your tap sampling results do not detect lead at one point in time.

You can help protect yourself and your family by identifying and removing lead materials within your home plumbing and taking steps to reduce your family's risk. Using a filter, certified by an American National Standards Institute accredited certifier to reduce lead, is effective in reducing lead exposures. Follow the instructions provided with the filter to ensure the filter is used properly. Use only cold water for drinking, cooking, and making baby formula. Boiling water does not remove lead from water. Before using tap water for drinking, cooking, or making baby formula, flush your pipes for several minutes. You can do this by running your tap, taking a shower, doing laundry or a load of dishes. If you have a lead service line or galvanized requiring replacement service line, you may need to flush your pipes for a longer period. If you are concerned about lead in your water and wish to have your water tested, contact your water provider. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available at epa.gov/safewater/lead.

#### **Service Line Inventory**

New state and federal laws require water systems to inventory all water service lines in their service area to classify the material. A service line is the underground pipe that carries water from the water main, likely in the street, into your home or building. If you would like to view a copy of the service line inventory or have questions about the material of your service line, please contact your water service provider.

## **FLUORIDE INFORMATION**

Fluoride is a compound found naturally in many places, including soil, food, plants, animals, and the human body. It is also found naturally in FVA's and Colorado Springs Utilities' water sources. Neither system adds additional fluoride to the treated water. Any fluoride in the treated water results from what occurs naturally in the source water.

#### **PFAS INFORMATION**

PFAS are a man-made chemical present in food packaging, commercial house-hold products, drinking water sources and manufacturing facilities. Currently, PFAS are not yet regulated under the National Primary Drinking Water Regulations. Under the Unregulated Contaminant Monitoring Rule (UCMR), Colorado Springs Utilities tested for 29 PFAS compounds in late 2024 and again in early 2025. Utilities did not detect any PFAS compounds above the laboratory reporting limits. For more information about PFAS click https://www.epa.gov/pfas. More information about UCMR is included towards the end of the report.

#### **DEFINITIONS**

- Maximum Contaminant Level (MCL) The highest level of a contaminant allowed in drinking water.
- Treatment Technique (TT) A required process intended to reduce the level of a contaminant in drinking water.
- Health-Based A violation of either a MCL or TT.
- Non-Health-Based A violation that is not a MCL or TT
- Action Level (AL) The concentration of a contaminant which, if exceeded, triggers treatment and other regulatory requirements.
- Maximum Residual Disinfectant Level (MRDL) –
  The highest level of a disinfectant allowed in
  drinking water. There is convincing evidence that
  addition of a disinfectant is necessary for control of
  microbial contaminants.
- Maximum Contaminant Level Goal (MCLG) The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
- Maximum Residual Disinfectant Level Goal
   (MRDLG) The level of a drinking water
   disinfectant, below which there is no known or
   expected risk to health. MRDLGs do not reflect the
   benefits of the use of disinfectants to control
   microbial contaminants.
- Violation (No Abbreviation) Failure to meet a Colorado Primary Drinking Water Regulation.
- Formal Enforcement Action (No Abbreviation) –
   Escalated action taken by the State (due to the risk to public health, or number or severity of violations) to bring a non-compliant water system back into compliance.
- Variance and Exemptions (V/E) Department permission not to meet a MCL or treatment technique under certain conditions.

- Gross Alpha (No Abbreviation) Gross alpha particle activity compliance value. It includes radium-226, but excludes radon 222, and uranium.
- Picocuries per liter (pCi/L) Measure of the radioactivity in water.
- Nephelometric Turbidity Unit (NTU) Measure of the clarity or cloudiness of water. Turbidity in excess of 5 NTU is just noticeable to the typical person.
- Compliance Value (No Abbreviation) Single or calculated value used to determine if regulatory contaminant level (e.g. MCL) is met. Examples of calculated values are the 90<sup>th</sup> Percentile, Running Annual Average (RAA) and Locational Running Annual Average (LRAA).
- Average (x-bar) Typical value.
- Range (R) Lowest value to the highest value.
- Sample Size (n) Number or count of values (i.e. number of water samples collected).
- Parts per million = Milligrams per liter (ppm = mg/L) One part per million corresponds to one minute in two years or a single penny in \$10,000.
- Parts per billion = Micrograms per liter (ppb = ug/L) One part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.
- Not Applicable (N/A) Does not apply or not available.
- Level 1 Assessment A study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.
- Level 2 Assessment A very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

#### TABLE OF DETECTED CONTAMINANTS

COLORADO SPRINGS UTILITIES routinely monitors for contaminants in your drinking water according to Federal and State laws. The following table(s) show all detections found in the period of January 1 to December 31, 2024 unless otherwise noted. The State of Colorado requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year, or the system is not considered vulnerable to this type of contamination. Therefore, some of our data, though representative, may be more than one-year-old. Violations and Formal Enforcement Actions, if any, are reported in the next section of this report.

**Note:** Only detected contaminants sampled within the last 5 years appear in this report. If no tables appear in this section, then no contaminants were detected in the last round of monitoring.

#### **Detected Contaminants Tables**

Colorado Springs Utilities (PWSID CO0121150)

## **Inorganic Contaminants**

Monitored at the Treatment Plant (entry point to the distribution system)

|                          |     |      | 141   | omitored at the   | · meatiment         | i idilic (Circi y    | point to the   | distribution system, |                                                                                                  |
|--------------------------|-----|------|-------|-------------------|---------------------|----------------------|----------------|----------------------|--------------------------------------------------------------------------------------------------|
| Contaminant              | MCL | MCLG | Units | Range<br>Detected | Average<br>Detected | MCL<br>Violatio<br>n | Sample<br>Size | Sample Dates         | Possible Source(s) of Contamination                                                              |
| Barium                   | 2   | 2    | ppm   | 0.02 – 0.05       | 0.03                | No                   | 5              | 2024                 | Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits       |
| Fluoride                 | 4   | 4    | ppm   | 0.15 – 1.08       | 0.45                | No                   | 5              | 2024                 | Erosion of natural deposits; discharge from fertilizer and aluminum factories                    |
| Nitrate (as<br>Nitrogen) | 10  | 10   | ppm   | 0 – 0.3           | 0.12                | No                   | 5              | 2024                 | Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits      |
| Selenium                 | 50  | 50   | ppb   | 0 – 5.0           | 1.0                 | No                   | 5              | 2024                 | Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines |
| Sodium*                  | N/A | N/A  | ppm   | 8.1 – 21.6        | 12.05               | No                   | 5              | 2024                 | Erosion of natural deposits                                                                      |

<sup>\*</sup>Secondary Contaminant - Secondary standards are non-enforceable guidelines for contaminants that may cause cosmetic effects (such as skin, or tooth discoloration) or aesthetic effects (such as taste, odor, or color) in drinking water.

Radionuclides

Monitored at the Treatment Plant (entry point to the distribution system)

|                  |     |      |       |          | ٠, , ,  |                  | , ,          |                                     |
|------------------|-----|------|-------|----------|---------|------------------|--------------|-------------------------------------|
| Contaminant      | MCL | MCLG | Units | Range    | Average | MCL<br>Violation | Sample Dates | Possible Source(s) of Contamination |
| Combined Radium  | 5   | 0    | pCi/L | 0-1.9    | 1.2     | No               | June 2020    | Erosion of natural deposits         |
| Combined Uranium | 30  | 0    | ppb   | 0 – 4.0  | 0.8     | No               | June 2020    | Erosion of natural deposits         |
| Gross Alpha      | 15  | 0    | pCi/L | 0 – 1.02 | 0.32    | No               | June 2020    | Erosion of natural deposits         |

## **Volatile Organic Contaminants**

Monitored at the Treatment Plant (entry point to the distribution system)

|             |        |        |       |          | ,        | / !       |                 | ·                                             |
|-------------|--------|--------|-------|----------|----------|-----------|-----------------|-----------------------------------------------|
| Contaminant | MCL    | MCLG   | Units | Range    | Average  | MCL       | Sample Dates    | Possible Source(s) of Contamination           |
|             |        |        |       | Detected | Detected | Violation |                 |                                               |
| Xylenes     | 10,000 | 10,000 | ppb   | 0 – 1.2  | 0.29     | No        | January, April, | Discharge from petroleum factories; discharge |
|             |        |        |       |          |          |           | July, October   | from chemical factories                       |
|             |        |        |       |          |          |           | 2024            |                                               |

## **Synthetic Organic Contaminants**

Monitored at the Treatment Plant (entry point to the distribution system)

| Contaminant       | MCL | MCLG | Units | Range<br>Detected | Average<br>Detected | MCL<br>Violation | Sample Dates                             | Possible Source(s) of Contamination      |
|-------------------|-----|------|-------|-------------------|---------------------|------------------|------------------------------------------|------------------------------------------|
| 2,4-D             | 70  | 70   | ppb   | 0 – 0.37          | 0.04                | No               | January, April,<br>July, October<br>2024 | Runoff from herbicide used on row crops  |
| Pentachlorophenol | 1   | 0    | ppb   | 0 – 0.06          | 0.01                | No               | April, July,<br>October 2024             | Discharge from wood preserving factories |

**Turbidity**Continuously monitored at the Treatment Plant (entry point to the distribution system)

|             |                                       | at the freatment fant (en | , po      |                | •••/                                |
|-------------|---------------------------------------|---------------------------|-----------|----------------|-------------------------------------|
| Contaminant | TT Requirement                        | Level Detected            | TT        | Sample Dates   | Possible Source(s) of Contamination |
|             |                                       |                           | Violation |                |                                     |
| Turbidity   | Maximum 1 NTU for any single          | Highest Single            | No        | Jan – Dec 2024 | Soil Runoff                         |
|             | measurement                           | Measurement: 0.29         |           |                |                                     |
|             |                                       | NTU, Oct                  |           |                |                                     |
| Turbidity   | In any month, at least 95% of samples | Lowest Monthly            | No        | Jan -Dec 2024  | Soil Runoff                         |
|             | must be less than 0.3NTU              | percentage of samples     |           |                |                                     |
|             |                                       | meeting TT                |           |                |                                     |
|             |                                       | requirement: 100%         |           |                |                                     |
|             |                                       | December                  |           |                |                                     |

## Total Organic Carbon (Disinfection Byproducts Precursor) Removal Ratio of Raw and Finished Water

Monitored at the Treatment Plant (entry point to the distribution system)

|                      |              |      |       |            | ( / 1          |           |                        |                                      |  |  |  |
|----------------------|--------------|------|-------|------------|----------------|-----------|------------------------|--------------------------------------|--|--|--|
| Contaminant          | MCL          | MCLG | Units | Range      | Average        | MCL       | Sample Dates           | Possible Source(s) of Contamination  |  |  |  |
|                      |              |      |       | Low - High |                | Violation |                        |                                      |  |  |  |
| Total Organic Carbon | TT minimum   | N/A  | N/A   | 1 – 2.02   | 1.15           | No        | 2024 Monthly - Running | Naturally present in the environment |  |  |  |
| (TOC)                | ratio = 1.00 |      |       |            | Annual Average |           |                        |                                      |  |  |  |

# **Disinfection Byproducts**Monitored in the distribution system

| Contaminant                      | MCL | MCLG | Units | Range<br>detected<br>of individual<br>sites | Average detected of individual sites | Sample Size | MCL<br>Violation | Sample Dates               | Possible Source(s) of Contamination      |
|----------------------------------|-----|------|-------|---------------------------------------------|--------------------------------------|-------------|------------------|----------------------------|------------------------------------------|
| Total Haloacetic Acids<br>(HAA5) | 60  | N/A  | ppb   | 8.4 – 47.5                                  | 21.18                                | 48          | No               | Jan, Apr, Jul, Oct<br>2024 | Byproduct of drinking water disinfection |
| Total Trihalomethanes (TTHM)     | 80  | N/A  | ppb   | 18.4 – 77.8                                 | 34.51                                | 48          | No               | Jan, Apr, Jul, Oct<br>2024 | Byproduct of drinking water disinfection |

## Disinfectants in the Distribution System

| Contaminant | MRDL/TT                     | Lowest TT  | Number of | Units | TT        | Sample Dates | Possible Source(s) of Contamination |
|-------------|-----------------------------|------------|-----------|-------|-----------|--------------|-------------------------------------|
|             |                             | Percentage | samples   |       | Violation |              |                                     |
|             |                             |            | below 0.2 |       |           |              |                                     |
| Chlorine    | MRDL = 4 ppm                | 99.13%     | 2         | ppm   | No        | 2024         | Drinking water disinfectant used to |
|             | TT= At least 95% of samples | March      |           |       |           |              | control microbes                    |
|             | per month must be at least  |            |           |       |           |              |                                     |
|             | 0.2ppm                      |            |           |       |           |              |                                     |

## **Lead and Copper**

## Monitored in the distribution system

| Contaminant | AL at the<br>90 <sup>th</sup><br>Percentile | MCLG | Units | Tap Sample<br>Range | 90 <sup>th</sup><br>Percentile | Sample<br>Size | Sample<br>Sites<br>Above AL | AL<br>Exceedance | Sample<br>Dates               | Possible Source(s) of Contamination                                  |
|-------------|---------------------------------------------|------|-------|---------------------|--------------------------------|----------------|-----------------------------|------------------|-------------------------------|----------------------------------------------------------------------|
| Copper      | 1.3                                         | 1.3  | ppm   | 0.0029 -<br>0.275   | 0.12                           | 59             | 0                           | No               | 06/09/2024<br>-<br>09/15/2024 | Corrosion of household plumbing systems; erosion of natural deposits |
| Lead        | 15                                          | 0    | ppb   | 0 – 35.4            | 5.7                            | 59             | 2                           | No               | 06/09/2024<br>-<br>09/15/2024 | Corrosion of household plumbing systems; erosion of natural deposits |

## **Unregulated Contaminant Monitoring Regulation (UCMR)**

EPA has implemented the Unregulated Contaminant Monitoring Rule (UCMR) to collect data for contaminants that are suspected to be present in drinking water and do not have health-based standards set under the Safe Drinking Water Act. EPA uses the results of UCMR monitoring to learn about the occurrence of unregulated contaminants in drinking water and to decide whether or not these contaminants will be regulated in the future. We performed monitoring and reported the analytical results of the monitoring to EPA in accordance with its Unregulated Contaminant Monitoring Rule (UCMR). Once EPA reviews the submitted results, the results are made available in the EPA's National Contaminant Occurrence Database (NCOD) (epa.gov/dwucmr/national-contaminant-occurrence-database-ncod) Consumers can review UCMR results by accessing the NCOD. A total of 30 contaminants were monitored. Only the contaminants that were detected during our UCMR sampling and the corresponding analytical results are provided below.

Monitored at the Treatment Plant (entry point to the distribution system)

|             |                        |          | , po  |             |                    |
|-------------|------------------------|----------|-------|-------------|--------------------|
| Contaminant | Average Level Detected | Range    | Units | Sample Size | Sample Dates       |
| Lithium     | 6.12                   | 0 – 14.8 | ppb   | 12          | Oct 2024, Jan 2025 |
|             |                        |          |       |             |                    |

<sup>\*\*\*</sup>More information about the contaminants that were included in UCMR monitoring can be found at: <a href="mailto:drinktap.org/Water-Info/Whats-in-My-Water/Unregulated-contaminant-Monitoring-Rule-UCMR">drinktap.org/Water-Info/Whats-in-My-Water/Unregulated-contaminant-My-Water/Unregulated-Contaminant-Monitoring-Rule-UCMR</a>. Learn more about the EPA UCMR at: <a href="mailto:epa.gov/dwucmr/learn-about-unregulated-contaminant-monitoring-rule">epa.gov/ground-water-and-drinking-water</a>. Water Hotline at (800) 426-4791 or <a href="mailto:epa.gov/ground-water-and-drinking-water">epa.gov/ground-water-and-drinking-water</a>.

#### No Violations or Formal Enforcement Actions

#### **Customers Have a Voice in Decisions**

We encourage customer participation in decisions affecting our drinking water.

- Utilities Board our governing body meets the Wednesday between City Council meetings, 1 p.m. at the Plaza of the Rockies, South Tower, 121 S. Tejon St., Fifth floor.
- Call 719-668-4800 or click <u>Utilities Board (csu.org)</u> for information.

#### **General Information**

To request a printed copy of this report or for questions call 719-668-4560.

For more water quality information or to access past Drinking Water Quality Reports click Water Quality Report (csu.org).